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We build upon our previous analytical results for the Penna model of senescence to include positive muta-
tions. We investigate whether a small but nonzero positive mutation rate gives qualitatively different results to
the traditional Penna model in which no positive mutations are considered. We find that the high-lifespan tail
of the distribution is radically changed in structure, but that there is not much effect on the bulk of the
population. The mortality plateau that we found previously for a stochastic generalization of the Penna model
is stable to a small positive mutation rate.
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I. INTRODUCTION

The Penna model, introduced by Penna in 1995[1], has
been extensively studied through simulation[2,3]. It models
senescence in an asexually reproducing population, with the
lifetime of an individual encoded in a simple bit-string model
of its genome. During reproduction, the bit-string is allowed
to copy and mutate, so that the population evolves a distri-
bution of genetic lifespans. The model is powerful enough to
reproduce some aspects of observed real-life behavior, and
adaptable enough to allow modifications aimed at greater
realism[4,5].

One shortcoming of the standard Penna model is that a
mutated genome is always worse than its parent[1]. While
this is a reasonable assumption, given that the rate of benefi-
cial mutations is small compared to that of harmful ones,
very little work has been carried out on Penna models with
positive mutations[6]. Here we develop an analytical solu-
tion to a Penna model with a small rate of positive mutation.
Our analysis builds upon previous work where a solution to
a generalized class of stochastic Penna models was presented
[7]. All populations are considered in the thermodynamic
limit of a large population where statistical fluctuations and
effects of discretization can be ignored. The exact limiting
behavior found below gives insight into any population large
enough for these two effects to be unimportant.

In the standard(deterministic) Penna model, the bit-string
determines the lifespan of an organism directly. One way
(but not the only way[8]) to interpret this is to say that there
is a set of hereditable diseases, which strike the organism at
a set of fixed ages during its lifetime. Once it has developed
a given number of these, the organism dies. Although the age
of death is thus programmed from birth, an individual is in
effect reading the bit-string sequentially through its life; it
drops dead after encountering the specified number of defec-
tive bits. (We call these 1’s; the rest are 0’s.) So long as it
lives, the organism produces offspring at a steady rate; these
inherit the parental genome, with a small ratem of harmful
mutation s0→1d and, in this paper, an even smaller ratea
for positive mutation, 1→0.

The simplest of all Penna models is that in which an or-
ganism dies after developing a single disease. For clarity of
argument, we confine our discussion to this version of the
Penna model in Secs. II and III. However, the analysis of
positive mutations that we present here can be adapted to any
of the more sophisticated Penna model variants we have
solved[9]. In Sec. IV, we address a stochastic variant show-
ing a mortality plateau[7].

II. A SIMPLE PENNA MODEL

We consider first the single-disease simple Penna model,
without positive mutation. The sites along the bit-string are
numberedx=0,1,2, . . . ; an organism in whose bit-string the
first 1 occurs on sitel will live for exactly l time steps and
thus has “genetic lifespan”l. Note that an organism withl
=0 (i.e., a 1 atsite x=0 in the string) will die instantly and
never contributes to the population. Note also thatx can be
thought of as the age of an organism; so long asx, l, it
remains alive.

The number of organisms with agex and genetic lifespan
l at time stepj is denoted bynjsx, ld. Newborn organisms
with genetic lifespanl can be produced either as copies of
organisms with the samel, or as mutated copies of organisms
of lifespanl8. l. In both cases, sites 0̄ l −1 must go unmu-
tated. These dynamics give the following discrete evolution
equation:

nj+1s0,ld = be−blo
x=0

`

njsx,ld + mbe−bl o
l8.l

`

o
x=0

`

njsx,l8d, s1d

wheree−b=1−m, with m the (small) mutation rate andb the
birth rate. The sum over ages ofnsx, ld is defined to bensld
and can be evaluated at steady state to givensld= l ns0,ld. At
steady state, the size of any part of the population is time-
independent. Manipulation of Eq.(1) then gives a recursion
relation for the relative sizes of subpopulations at steady
state,

nsl + 1d
nsld

=
l + 1

l

ebl − bl

ebsl+1d − bsl + 1de−b . s2d
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For the population to remain finite, there must be a maxi-
mum sustainable genetic lifespanlmax; for l . lmax, nsld=0
(see Sec. III B for further discussion). Any subpopulation
with a smaller genetic lifespan is partly reliant on a flux, by
mutation, from longer-lived subpopulations. These two con-
ditions give restrictions on the choice oflmax, b, and b, as
explained, and confirmed by simulation, in[7],

lmax,
1

1 − e−b , s3d

b =
1

lmax
eblmax. s4d

III. SOLUTION WITH POSITIVE MUTATION

We now introduce a small positive mutation ratea into
the simple one-disease Penna model just described. Just as a
harmful mutation converts a 0 into a 1, a positive mutation
ratea converts a 1 into a 0 with probabilitya. The ratea is
taken to be sufficiently small that there is no chance of mul-
tiple positive mutations occurring on the same organism.
Further, we assume thata is small compared to the rateb of
harmful mutations. This ensures that after the first 1 in an
organism’s bit-string, the remaining bits are, to high accu-
racy, all 1’s due to the accumulated effects of harmful muta-
tions. In the absence of positive mutation this is clearly the
case, as the accumulation of harmful mutations is irreversible
and there is no evolutionary pressure for an organism to have
healthy sites on its bit-string beyond the sitex= l. Positive
mutations allow this accumulation to be reversed, but so long
as a!b, there remains no evolutionary pressure on sites
after the first 1; an organism’s bit-string can thus be taken to
consist of entirely 1’s after the first 1. This is a very strong
condition, and in steady state it allows(as in Sec. II) any
bit-string to be characterized by a single number, the genetic
lifespanl.

A. Dynamical equations

When considering mutations on an offspring, we impose
that positive mutations take place first, then negative muta-
tions. This is to further enforce the weak nature of positive
mutations, preventing them from overriding harmful muta-
tions in the same time step.

Introducing the positive mutation ratea then gives a
slightly modified equation fornjs0,ld in place of Eq(1),

nj+1s0,ld = s1 − adbe−blo
x=0

`

njsx,ld + abe−blo
x=0

`

njsx,l − 1d

+ s1 − admbe−bl o
l8.l

`

o
x=0

`

njsx,l8d

+ ambe−bl o
l9ùl

`

o
x=0

`

njsx,l9d. s5d

The first term on the right corresponds to organisms with

genetic lifespanl reproducing with no harmful mutations at
sitesx, l and no positive mutation atx= l. (Note that there
are l sites withx, l; the factore−bl is the probability of no
harmful mutation at any of these.) The second term corre-
sponds to offspring from organisms with lifespanl −1 with
one positive mutation(at sitel −1) and no harmful mutations
at sitesx, l. The third term gives mutated offspring from
longer-lived organisms(of lifespan l8. l) without positive
mutation, without harmful mutation for sitesx, l, but with
harmful mutation at sitex= l. The final term gives mutated
offspring from longer-lived organisms of lifespanl9 where
positive mutation occurs at sitex= l9 but is negated by harm-
ful mutation atl, with no harmful mutation for sitesx, l.

Defining nsld=ox
` nsx, ld as the total number of individu-

als of lifespanl, in the steady state we find

0 =Ss1 − adbe−bl + ambe−bl −
1

l
Dnsld + abe−blnsl − 1d

+ mbe−bl o
l8.l

`

nsl8d. s6d

Writing a similar expression fornsl +1d allows construction
of a recursion relationship betweennsld, nsl −1d, and nsl
+1d. [Note thatns0d is known to be zero.] This can be writ-
ten, for givenb, b, anda, as

nsl + 1d =
l + 1

l
3

febl − s1 − a − ae−bdblgnsld − ablnsl − 1d
ebsl+1d − s1 − adbsl + 1de−b .

s7d

Note that ifa is set to zero, Eq.(2) is recovered.

B. Subtleties at largel

Deducing boundary conditions at largel, in the presence
of positive muations, is nontrivial. The possibility that an
infinitely long-lived organism can evolve from a population
of shorter genetic lifespans means that no part of the popu-
lation is uniquely self-sustaining. This is in contrast to the
simple Penna modelsa=0d where the maximum sustainable
genetic lifespanlmax remains finite in the thermodynamic
limit of a large population; individuals ofl = lmax reproduce
unmutated offspring at a rate that precisely balances their
own death rate. With positive mutation present, this cannot
be true. Organisms of putative maximal lifespanlmax can
produce positively mutated offspring with a longer lifespan,
and in a large enough population there can be nolmax.

Instead we insist that, for a steady-state distribution to be
physical, the population must be finite(with the thermody-
namic limit taken only at the end). The effects of this re-
quirement can be seen by taking the limit of an arbitrarily
small birth rateb. When taking this limit, we do not apply
the steady-state conditions(3) and (4), which hold for the
simple Penna model only. In the limit of a vanishing birth
rate, both the simple Penna model and the Penna model with
positive mutations return a recursion relation for the relative
sizes of successive subpopulations as follows:
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nsl + 1d
nsld

=
l + 1

l
e−b. s8d

This limiting expression is independent of the birth rate so
that, asb tends to zero, the population can remain nonzero,
with a distribution that is solely dependent onb. This non-
intuitive result can be explained by the behavior of organ-
isms with infinite l. An infinitely long-lived organism can
reproduce during its lifetime despite an arbitrarily small birth
rateb. Moreover, in the limit ofb→0, the mutated offspring
of this “super organism” make up the entire population.
However, a population with even one super organism cannot
be finite since, according to Eq.(8), nsl →`d /ns1d=0. It is
clear, therefore, that steady-state solutions of the recursion
(7) involving the presence of a super organism are not physi-
cal, and should be discarded.

To summarize, in the simple Penna model of Sec. II the
requirement of a finite population directly imposes anlmax.
When positive mutations are allowed there is nolmax, but the
population is still required to be finite. Thus the steady state
must not contain super organisms if it is to represent a physi-
cal population, and the thermodynamic limit must be taken
so as to exclude them.

C. Results

An acceptable steady state can be found by imposing an
artificial maximum genetic lifespanlc beyond whichnsld is
taken to be zero. With this artificial cutoff, for specifieda
andb, b can be found so as to satisfy the steady-state con-
ditions. Aslc approaches infinity, the difference between this
approximate steady state and the real steady state will vanish
for a sufficiently large population. The convergence ofb with
increasinglc is shown in Fig. 1. We require that atlc the
values ofnslcd and nslc−1d predicted by the positive muta-
tion recursion relation satisfy to high order

nslcd
nslc − 1d

=
ablc

eblc − amblc − s1 − adblc
. s9d

This ensures that contributions from longer-lived organisms
vanish, preventing the existence of a super organism aslc

tends to infinity. This procedure resolves the paradoxes asso-
ciated with the thermodynamic limit that were set out above,
and allows us to find all the population properties from the
recursion derived earlier.

Analytical results, found by this method, for a Penna
model with a small but nonzeroa are shown in Fig. 2. The
population distributions with and without positive mutations
are not dissimilar, but there are crucial differences. As dis-
cussed, with positive mutations allowed there is no maxi-
mum genetic lifespan. What is observed instead is a small
but nonzero population beyond what would belmax in the
simple Penna modelsa=0d. The remaining distribution
closely resemblesa=0, with lmax taking its largest allowed
value for the specifiedb.

Note that, depending on the size and history of the popu-
lation, the maximum lifespan of a simple Penna population
may be less than the largest permissible value oflmax [7], due
to the effect of Muller’s rachet[10]. In other words, if a
fluctuation within a finite population causes the self-
sustaining subpopulation of longest-lived individuals to die
off, they can never return and the maximum lifespan is per-
manently reduced. With positive mutations this loss of fitness
due to statistical fluctuations is reversible; positive mutations
can act to restore the mean fitness of a population which has
fallen below the maximum permitted by the simple Penna
model.

IV. EFFECT ON MORTALITY PLATEAU

In [7] we demonstrate that a Penna model with a modified
survival function can exhibit a mortality plateau at advanced
ages[11,12]. The strict deterministic nature of the original
Penna model is relaxed; organisms with genetic lifespanl do
not necessarily die at agel, though this is their expected
lifespan. The “step function” survival up to agel of the
simple Penna model is softened to a Fermi-like function
whose width parameterw controls the genetic indeterminacy
in the age of death.

FIG. 1. Birth rate b is plotted against the trucated genetic
lifespan lc for a=0.001s3d and a=0.005s+d. In both casesb
= 1

30. Genetic lifespan is measured in time steps.

FIG. 2. Lifespan distributions for a Penna model with positive
mutations in whicha=0.005s3d and a=0.001s+d and without
positive mutationss(d. In each caseb= 1

30. Genetic lifespan is mea-
sured in time steps.
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We observe that for a small positive mutation rate the
mortality plateau is preserved(see Fig. 3). This plateau is the
result of organisms living beyondl “on borrowed time”[7].
Even witha.0, the majority of the organisms at advanced
ages are rare survivors to ages far beyondl, and the mortality
of these survivors is almost constant. The variation in mor-
tality rates asa increases comes from the increased fraction
of organisms with longer genetic lifespans(see Fig. 2). Since
a positive mutation rate acts to increase the average lifespan

of the population, a corresponding decrease in mortality is to
be expected.

V. CONCLUSION

The nature of the positive mutations we have considered
differs from that investigated by Oliveiraet al. [6] in that it
does not increase the mean fitness of the population over
time. Our small positive mutation rate is a relatively weak
effect, and while it is able to restore the mean fitness of a
population if pushed away from steady state(offering limited
protection from Muller’s ratchet), it cannot improve the
population’s fitness in a sustained manner. Strong positive
mutations, such as those considered by Oliveiraet al., are
capable of sustained improvement in the fitness of a popula-
tion but will take place over a far greater time scale than the
weak positive mutations we have considered.

Our analysis is limited to a small positive mutation rate. If
the positive mutation rate were to become comparable to the
negative one[13,14] (it must remain smaller for there to be a
possible steady state), then the assumption that there is no
evolutionary pressure on bits after the terminal one would
become invalid and our description of the Penna string
would break down. However, it has long been accepted that
positive mutation is extremely rare compared to harmful mu-
tation; as such, this work addresses the relevant regime.

ACKNOWLEDGMENTS

The authors would like to thank D. Khemelnitski, M.
Rutter, and J. Trail for useful advice and discussion.

[1] T. J. P. Penna, J. Stat. Phys.78, 1629(1995).
[2] T. J. P. Penna and D. Stauffer, Int. J. Mod. Phys. A6, 233

(1995).
[3] S. Moss de Oliveira, Physica A257, 465 (1998).
[4] T. J. P. Penna, S. Moss de Oliveira, and D. Stauffer, Phys. Rev.

E 52, R3309(1995).
[5] A. K. Altevolmer, Int. J. Mod. Phys. A10, 717 (1999).
[6] S. Moss de Oliveira, D. Stauffer, P. M. C. de Oliveira, and J. S.

S. Martins, Physica A332, 380 (2004).
[7] J. B. Coe, Y. Mao, and M. E. Cates, Phys. Rev. Lett.89,

288103(2002).

[8] J. B. Coe, Y. Mao, and M. E. Cates(unpublished).
[9] J. B. Coe and Y. Mao, Phys. Rev. E67, 061909(2003).

[10] H. J. Muller, Mutat Res.1, 2 (1964).
[11] S. D. Pletcher and J. W. Curtsinger, Evolution(Lawrence,

Kans.) 52, 454 (1998), and citation therein.
[12] J. S. Weitz and H. B. Fraser, Proc. Natl. Acad. Sci. U.S.A.98,

15383(2001), and citations therein.
[13] W. Hwang, P. L. Krapivsky, and S. Redner, Phys. Rev. Lett.

83, 1251(1999).
[14] W. Hwang, P. L. Krapivsky, and S. Redner, J. Math. Biol.44,

375 (2002).

FIG. 3. Mortality rates for a Penna model with positive muta-
tions and Fermi-like survivability function in whichw=0.12, a
=0.005s3d, anda=0.001s+d and without positive mutationss(d.
In each caseb= 1

30. Age is measured in time steps.

COE, MAO, AND CATES PHYSICAL REVIEW E70, 021907(2004)

021907-4


